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Abstract—This paper examines the stability of natural convection of a radiating fluid contained in a vertical
slot having isothermal side walls at different ternperatures. An absorbing-emitting, non-grey but non-
scattering fluid is considered and the Pl approximation is used to desoribe the radiative flux in the energy
equation. The base flow equations and the linear stability equations were solved by a spectral tau method,
The effect of radiation on the critical values are presented as functions of the interaction parameter, the
optical thickness of the fiuid, the non-greyness parameter and the wall emissivities over a wide range of
stratification parameter. The energetics of the critical disturbance modes were also calculaied. For all the
cases investigated, it is found that the instabilities set in as a single travelling wave the moving direction
of which depends on the wall emissivities. The predictions of the stability analysis are verified by finite
difference calculations of multicellular flows of radiating fluids,

INTRODUCTION

THiS PAPER reporis on a study of thermal convective
flows of radiating gases enclosed in vertical slots with
side walls maintained at uniform but different tem-
peratures. For high aspect ratio cavities, the flow may
become unstable in the conduction regime and it under-
goes a transition to a multicellular flow pattern. This
behaviour has been studied theoretically by using the
linear stability analysis and the minimum Grashof
number, for which a one-dimensional base flow
becomes unstable, has been determined accurately for
a large range of Prandtl numbers {1-4]. At moderate
Prandtl numbers (Pr < 12.7), only the stationary
instabilities exist for the conduction regime in a fluid
layer contained between two isothermal plates {4, 51
The instability is hydrodynamic in its origin and the
critical Grashof number is nearly independent of
Prandt! number. However, when asymmetries occur
in the base flow [6], the instability sets in as a single
wave travelling along one of the plates.

To study the stability in the transition as well as
boundary layer regimes, the effects of the vertical tem-
perature gradient must be taken into account. This
can be donme by introducing into the analysis an
additional parameter, namely the stratification para-
meter m = (y Ra/4)*** where y is an arbitrarvy con-
stant which gives the state of temperature strati-
fication of the core in dimensionless form {5, 7]. It has
been shown by Bergholz that the magnitude of m and
the value of Pr have a strong influence upon the type
and character of the instability. For Prandtl numbers

close to unity, a change in the mode of instability
occurs if m exceeds a value of the order of m, ~ 5:
the critical disturbance modes are stationary if
m < mr; and travelling waves if m > m,. These results
can be applied not only for a vertical layer but also for
cavities the aspect ratios of which are moderately large
provided that a uniform stable vertical temperature
gradient is present in the core. For example, travelling
waves were observed experimentally by Schinkel {8]
for air-filled cavities with aspect ratios ranging from
5to 9. Agreements between theoretical and numerical
results have also been noted in the works of Jones [9],
Lee and Korpela [10], Lauriat and Desrayaud {11}
among others.

While the Benard problem of radiating fluids has
received considerable attention in the past, the vertical
case has been much less studied. The interaction of
radiation and convection in the boundary layer
regime has been analytically and experimentally
examined by Bratis and Novotny {12]. The exper-
imental data are compared to a boundary layer type
analysis and special attention is turned to the heat
transfer calculations and to the accuracy of radiation-
gas models rather than on the influence of the inter-
action upon the flow regimes. More recently, Kuro-
saki ef al. {13] numerically and experimentally studied
combined radiation and natural convection using car-
bon dioxide as a radiating medivm in a cavity of
moderate aspect ratio. The effects of radiation on the
various flow regimes were investigated numerically by
Lauriat {14, 15} both for grey fluids and for non-grey
gases.
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NOMENCLATURE

a thermal diffusivity Greek symbols
A aspect ratio of the cavity, H/D o dimensionless wave number in the z-
D width direction
Gr Grashof number, gBAT’ D */v? B coefficient of thermal expansion
H height of the cavity ¥ vertical dimensionless temperature
I, first moment of the radiation intensity gradient, 07/0z
k., mean extinction coefficient & emissivity of wall ;i = 1,2
n index of refraction n non-greyness factor
p pressure A thermal conductivity
P, interaction parameter, k., A/n*G T.> v kinematic viscosity
Pr Prandtl number, v/a o dimensionless complex decrement,
q: radiative heat flux vector of components o, +io;

(Gex> G12) & Stefan—Boltzmann constant
Ra Rayleigh number, Gr Pr = gBAT’ D?/av T, optical thickness, &, D.
T dimensionless temperature
T dimensionless mean temperature S -
TX*(x) shifted Chebyshev polynomial of the first UPEISCripts .

. base flow quantity

kind (nth order) .

AT’ temperature difference between the side , pftrturb-ed quantlty.
dimensional quantity.

walls
A\ velocity vector of components (v, w)
x dimensionless horizontal coordinate, Subscript

x'|D i coldwall,i=1atx =0; hotwall,i=2
z dimensionless vertical coordinate, z'/D. atx = 1.

The first theoretical study of the stability of the
conduction regime was carried out by Arpaci and
Bayazitoglu [16]. An approximate formulation of the
equation of radiative transfer which permits a for-
mulation involving only a differential equation (P1
approximation) was used because of its simplicity.
Thus, in addition to the Grashof number, the stability
characteristics of a radiating gas layer depend on four
parameters: the optical thickness 7,, the interaction
parameter or Planck number P, the non-greyness #
and the emissivities of the vertical plates. An impor-
tant outcome of this study is that the critical Grashof
number reaches a maximum when the optical thick-
ness increases. For thick gases, radiation does not
affect the onset of instability and the maximum is
more pronounced for cases corresponding to non-
grey gases and non-black boundaries. The decreases
of P, or of the emissivities of the plates flatten the
base temperature which, in turn, leads to a decrease
of the vertical velocities. Consequently the onset of
instabilities is delayed in the conduction regime since
the instabilities are produced by the shearing forces
between the upward and downward flowing streams.
This effect has also been shown in two-dimensional
numerical calculations [14].

The stability of the conduction regime of radiating
gases contained inside slender slots and subjected to
either prescribed wall temperatures or convective
boundary conditions has been studied by Hassab and
Ozisik [17]. An identical formulation of the radiating

part of the problem was employed and the previous
results were reinforced for the vertical case. In recent
papers {18-20], the initial state was investigated in the
convection regime and the base flow solution was
found to agree with the numerical results obtained
around the midheight of high aspect ratio cavities with
a two-dimensional computational code. Also, it has
been shown that the principle of exchange of stabilities
does not hold in the conduction regime for asymmetric
radiative boundary conditions or if the radiation term
in the base flow equations is not linearized. For these
cases, the instabilities set in as a single travelling wave
the moving direction of which is strongly dependent
on the emissivities of the bounding walls.

To date, the stability of the convection regime in
radiating gases has not been treated in detail. The
purpose of this study is to examine the effects of radi-
ation on the stability properties of the transition and
boundary layer regimes. Most of the results are
restricted to cases for which radiative transfer and
natural convection are of the same order of magni-
tude. In the following sections we present the basic
system to be solved first. An extension is made to the
application of the P3 approximation method for the
radiation part of the problem in order to consider the
improvement to be brought to the previous P1 results,
especially at intermediate optical thicknesses. The
dependence of the critical quantities upon the strati-
fication parameter and the four radiation parameters
quoted above is discussed next.
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BASE FLOW SOLUTION

Consider the parallel flow of an absorbing,
emitting, non-grey viscous fluid within a vertical chan-
nel. The side walls located at x” = 0 and D are taken
opaque, grey and diffuse and are held at uniform
temperatures T, and T}, respectively, with T1, > T¢.
A Cartesian coordinate system is chosen with the posi-
tive z’-axis in the direction opposite to the gravity
vector g. It is assumed that the temperature difference
AT = T3 —T¢ is small enough such that the Bous-
sinesq approximation is valid and that viscous dis-
sipation is negligible. The governing equations are put
into non-dimensional form by introducing the set of
scales (D, v/gBAT'D, AT', n’6T2AT’) for length,
time, temperature and radiative flux (or first moment
of the radiation intensity), respectively. Assuming that
a stable vertical temperature gradient y is found in the
core, the equations governing the plane-parallel flow
may be obtained from the general formulation by
setting

p=p@)
V = [0, w(x)]
T(x,z) = T(x)+yz
4 = (G, 0). M

The dimensionless equations governing the initial
motion then reduce to

d*w dT
o ta=? &)
d*T 1, dg,.
4mw—d——+P0 dx—O 3
subject to boundary conditions
w=0, T=T,+05 atx=0,1. @

In equation (3) m is the stratification parameter
defined by 4m* = Ray. The positive sign in equation
(4) and in the subsequent equations is for the surface
at x = 1. In these equations, the pressure has been
eliminated by deriving the equation of motion. Conse-
quently, a supplementary condition must be used to
insure the closure of the system. In order not to force
the velocity to be zero at x = 0.5, the third condition
applied to the equation of motion is deduced from a
mass flux over any cross-section

Jl w(x)dx = 0. ®)]

The first- and third-order spherical harmonics
method [21] modified in order to include the weighted
effect of nongreyness [16] have been used to calculate
the radiative flux in the energy equation.

If the radiation part is solved by the P1 approxi-
mation, the radiative flux is given by

d?g,.(x) —302G,(x) — 41'0'1 dT*(x)
dx? e dx

=0 (6)
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which is subject to boundary conditions

4, dg
(99 _ o =0t ™
nt, dx

When using the P3 approximation, the following
equation must be solved :

q-l'X i

d4qr.x 2d2qrx 35 4=
dx — 107, T, dx 2 +_Toqrx
n d3T* 140 o n dT“_
—4% T3 dx? °T3 dx 0. ®
At wall i, the boundary condition may be stated as
d*q,, 37 ,dg.. , 56 , _ 47
T T3 % dx —9i° +4T°T_§, dx? =0
ql’X dzqrx
A +e)yi—g 5 £ 320t -43
5 2 qrx
+ 3 3% [7— 90(1+s)y,] 3 y,(7s 19)
_ n d27"'4
X Tgr'qrx _60(1 +£i)’))i1:o iw—r_“:‘ Tx_f

2 T4
1 211_dT _
+[ 128y,1; 3 dx]—O 9
where

yi=1/(5-3¢) and A =¢/2Q2—¢), i=1,2.

For the non-radiating case, the exact solution for
the basic state can be readily found. Also, analytical
solutions have been determined in the conduction
regime for radiating fluids but by linearizing the non-
linear term contained in equation (6) {16, 17]. On
the other hand, the algebraic involvement with the
solution of the base flows corresponding to the con-
vection regimes should be a formidable task especially
when using the P3 approximation. Moreover, the
radiation term should be linearized and we shall show
afterwards that this procedure has a clear influence
on the stability calculations. Consequently, it is pre-
ferable to solve the basic equations numerically. At
this point, it is appropriate to anticipate somewhat
the contents of the next section : following the classical
approach for stability problems, the disturbance vari-
ables will be expanded into a finite series of complete
orthogonal trial functions to obtain approximate
solutions of the eigenvalue problem. Since the solution
of the basic state has to be introduced in the per-
turbation equations, it is desirable that the approxi-
mate solution of the initial problem should be ex-
pressed in terms of identical trial functions in order
to simplify the treatment of the perturbation equa-
tions. In this study, Chebyshev polynomials were
chosen to improve convergence [22]. Accordingly, the
solution is expanded as

> fTHx)

n=0

feo = 10
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where T} is the nth-degree shifted Chebyshev poly-
nomial of the first kind and 7 stands for w, T, §,,.
Truncating each of the series to N terms and requiring
the residuals to be orthogonal to each expansion func-
tion with the usual weight leads to a non-linear system
for the expansion coefficients [18].

The general systems of equations were solved using
the DGEFS routine from the SLATEC Library and
the computations were performed in double precision
on a VAX 11/780 computer. Concerning the number
of terms which must be retained in the polynomial
expansions, it has been found that N depends both
upon the strength of the non-linear coupling between
the energy and radiative transfer equations and upon
the value of the stratification parameter. For example,
in the boundary layer regime and for 17,=1 the
numerical method generates fourth decimal place
accuracy when truncating the series to 12 terms only
while an apparent fimiting value is achieved with
N = 18. For larger optical thicknesses, the radiative
flux varies steeply at the walls, Consequently, more
terms are required to obtain a given accuracy.
For most of the computations presented herein, the
number of terms ranges from 18 to 24,

The influence of radiation on the temperature pro-
file is only mentioned here because it could be derived
from previous literature ;: smaller temperature gradi-
ents are found in the middle of the layer and larger
gradients near the boundaries.
Planck number produce increases of these effects for
all optical thicknesses with a maximum for 7, ~ 1.
Radiation becomes unimportant for small optical
thicknesses (7, 2 0.1if P, > 0.1) and the problem may
be assumed to be the one of a non-radiating fluid with
a modified Prandtl number for large optical thick-
nesses since the radiative transfer tends towards a
diffusive process. More interesting are the influences
of radiation on the velocity field since the maximum
velocities decrease or increase when increasing the
relative importance of radiative heat transfer accord-
ing to the value of the stratification parameter. For
example, at 7, = 1, decreases of P, yield decreases in
velocities if m < 4.5 while the opposite is seen in the
boundary layer regime. It should also be noted that
the velocity and temperature profiles are asymmetric

with maximum velocities located within the cold side
for black boundaries. This effect is due to the non-

Decreases of the

linear term in the energy equation. The influences of

increases of the optical thickness are similar but with
a maximum around moderate 1,.

The accuracy of the Pl approximation has been
studied by comparison with the P3 approximation. It
is well established that the first-order approximation
is not adequate for solving the two-dimensional equa-
tion of radiative transfer in square enclosures unless
the medium is optically thick [21]. On the other hand
the P3 approximation provides adequate results for
7, > 0.5. However, it should be noted that the large
discrepancies obtained under radiative equilibrium
conditions (P, = 0) and for cavities with moderate
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approximations (P, =10.5, <
Pr =0.7).

n of velpgity
ocit

aspect ratios cannot challenge the validity of the
results for the limiting one-dimensional coupled prob-
lem which corresponds with the basic flow. On
account of the quite different points of view which can
be found in the literature about this question, it was
found appropriate to present selected comparisons
between P1 and P3 results. Figure 1 shows Vuou[y
profiles for a moderate Planck number and 7, =1
in the three flow regimes: the largest deviations are
obtained in the conduction regime since P, is only a
dimensionless measure of the relative importance of
radiative and conductive heat fluxes and they are kept
within a few percent. The discrepancies are much less
expressed for the temperature while they are more
important for the radiative heat flux. This can be seen
in Fig. 2 especially around optical thicknesses of one.
For the most unfavorable case considered in this
study, the discrepancies in the velocities are about
10% while the radiative transfer produces a decrease
of the maximum velocities of about 40%. In
conclusion, it is believed that the P1 approximation is
accurate enough to provide all the general trends on
the effects of radiation for participating media
enclosed in tall cavities. The increased complexity in
the high-order approximations and the required com-
putational efforts are only justified in radiation-domi-
nated cases. The relevance of the stability com-
putations could then be questionable.

LINEAR STABILITY ANALYSIS

To investigate the stability of the basic flow, we
follow the conventional approach in linear theory of
superimposing arbitrarily small perturbations on the
base flow velocities, pressure, temperature and radi-
ative flux or first moment of the radiation intensity 7,
according to

~_ "1 (11
i 37, dx

Wy

Thus the four variables are considered to be the
sum of base flow (denoted by bars) and disturbance
quantities (denoted by tildes) as follows:
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(o] 0.5 1

F1G. 2. Comparison of radiative heat flux distributions for
the P1 and P3 approximations (P, =1,¢,=¢,=1,71=1,
Pr=0.7).

(U’ w,p, Ta IO) = (0, W,ﬁ, Ta I—O)+6(ﬁ’ w,ﬁ, Ta i0)>

e« 1.

(12)

The perturbation equations are obtained by intro-
ducing the total quantities into the system of equa-
tions of the initial state cast in the stream function—
vorticity formulation (¥,Q), then subtracting the
base flow equations from the resulting equations and
finally neglecting the perturbation terms of second
and higher orders.

It should be stressed that the perturbed flow is
obtained by considering that the parallel base flow
can only be perturbed through two-dimensional
infinitesimal disturbances in the x—z plane. The depen-
dence of the perturbation quantities on x, z, ¢ is written

as a superposition of Fourier modes of the form
F(x,2,1) = f(x)exp (ioaz+ o). (13a)

A temporal analysis being undertaken, the decrement
o = ¢,+10; is complex while the wave number « in
the vertical direction is real. The wave speed ¢ and the
wavelength 4, of the disturbances are given by

(13b)
(13¢)

c= —oijn

A’d = 27‘1:/0(.
If ¢ = 0, the disturbance mode is stationary and it is
a travelling wave otherwise. The amplification rate of

the Fourier mode is denoted by a,. The perturbation
equations can be written as

0=(22-a®)y—Q (14)

0GrQ = {(2°—a*)—iaGrw}Q+DT+iaGr D2y
(15)
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6RaT = {(2*—o’)—ia Raw}T

—4m*DY+ia RaDTY + %(@z—al)lo (16)
0
T}
0= {(Qz—az)—313}10+4813FT amn
where
2 = d/dx.
The boundary conditions at x = 0, 1 are
=2y =0
T=90 (18)
341,
@IO _‘t I() = 0

This set of equations is solved by the spectral tau
method with shifted Chebyshev polynomials of the
first kind as trial functions. The four variables Q,
¥, T, I, are expanded according to equation (10).
Substituting the expansions into equations (14)—(17)
and requiring the residuals to be orthogonal to the
trial functions leads to a complex algebraic eigenvalue
problem [19] which must be completed with equations
(18) since the trial functions do not satisfy the bound-
ary conditions.

This system can be written in matrix form as

AX = ¢BX. 19)
The vector X consists of the coefficients of the series.
Matrix 4 is complex and B real.

The parameters which control the stability problem
in the system of equations (14)—(17) are the Grashof
number, the Prandtl number, the stratification para-
meter, the four radiation parameters P, 1,, 7, §; and
the wave number. The condition for solving the above
system generates an eigenvalue relation of the form
Gr(Pr,m, Py, 1,,1,¢;,0) = 0. The eigenvalue o is a
measure of the decay or amplification of the dis-
turbances : depending on whether o, is positive, zero
or negative, the disturbance is amplified, neutral or
damped out; the curves of marginal stability are
reached for o, = 0. Each point on these curves was
constructed by applying a secant method of iteration
to Gr with « fixed by satisfying the requirement that
the real part of the highest eigenvalue equal to zero
within a specified error for the Grashof number
(errors less than 0.5%). According to the value of ¢; at
this point, the flow is subject to stationary instability
(0; = 0, exchange of stabilities) or to travelling wave
instability (o; # 0, overstability). The critical Grashof
numbers, Gr,, and the critical wave numbers, «,, cor-
respond to the absolute minimum of the neutral
curves. These minima were determined using a spline
interpolation method.
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DISTURBANCE ENERGY BALANCE

The power integral method, based on a balance of
energy which takes into account the base flow dis-
torsion due to the Reynolds stress and the buoyancy
forces, gives additional insight into the physical pro-
cess involved in the onset of instability. Indeed, at the
critical points, the rate of transfer of kinetic energy
from the total flow into the disturbances precisely
balances the rate at which the energy of the dis-
turbances is lost due to the viscous dissipation.

Following ref. [5], we obtain by applying the power
integral method on the momentum equation

0,GrE} = GrLF+LF 3% (20)

where the expression for E¥, %, X% are given in the
Appendix. In equation (20), the term on the left-hand
side represents the rate of growth of the disturbance
kinetic energy. The energy source terms are Gr Z¥, the
rate of transfer of kinetic energy from the total flow
to the disturbance due to Reynolds stress (shear
forces), and L%, the rate of transfer of kinetic energy
to the disturbance due to the buoyancy forces. The
term —X¥ is always negative (sink term) and gives
the rate of loss of kinetic energy of the disturbance
due to viscous dissipation. On the neutral curves an
equilibrium flow is possible and we have

I} = GrIf+It. @1

By studying the sign and the relative magnitudes of
GrIt and I%, the main contribution to the dis-
turbance kinetic energy can be found. In the following
subsections, equation (21) will be normalized by
dividing the two sides by Z%. Therefore, by setting
Z,=2¥E%and £, = £3%/Z% thesum Gr X, + X, must
be equal to unity (within a prescribed numerical error)
at the neutral points.

RESULTS

The numerical results were obtained for radiative
parameters considered reasonable for gases and for a
maximum temperature difference between the vertical
side walls equal to 20% of the reference temperature
(T., = 5) so that the Boussinesq approximation might
be valid. The Prandtl number was taken to be 0.7 for
all the cases presented here. This value is rep-
resentative of radiating gases such as carbon dioxide
or ammonia at atmospheric pressure in the tem-
perature range 300-500 K but slightly low for water
vapour {Pr ~ 1). For the Planck number, the smallest
value was P, = 0.1. This is somewhat greater than the
values used in previous stability studies [16, 17] but
still out of the range corresponding to usual gases
{13]. The domains of variations chosen for 7, and #
also appear to be representative of gases.

Stability calculations
In order to reduce the number of independent para-
meters, we will first consider grey media (n=1)

G. Desrayaup and G. LAURIAT

between black isothermal walls (¢; =¢,=1). The
neutral curves for values of stratification parameters
relevant to the three flow regimes and for various
Planck numbers at moderate optical thickness are
shown in Fig. 3. The first significant effect of radiation
is found in the nature of the disturbances. For a non-
radiating fluid with Pr = 0.7, stationary wave dis-
turbances govern the onset of instability if m < 5 while
a transition to travelling wave instability occurs at the
higher stratification corresponding to the boundary
layer regime (the beginning of this regime being char-
acterized by a negative horizontal temperature gra-
dient at the centre-line of the channel). On the other
hand, the odd-symmetry of the base flow being
destroyed by radiation, the neutral Grashof number
is always determined by travelling wave disturbances,
even in the conduction regime. The second effect of
radiation is to shift upward the neutral curves in the
conduction regime. By decreasing P,, the increase in
critical Grashof number, Gr, (denoted by dashes on
the neutral stability curves), occurs continuously as
can be seen in Fig. 3(a). It should be added that the
critical Grashof numbers depend weakly upon the
formulation used for the radiation term (linearized or
not). Also, the critical wave speeds are much less than
the maximum velocities of the base flow [20]. In the
transition regime and at stratification parameters for
which radiation increases the base flow velocities, the
neutral stability curves are shifted downward (Fig.
3(b)). In these cases, the energy for instability is
derived mainly from the shear forces at the midplane
between the upstream and downstream flows. As
shown in Fig. 3(b), radiation then plays a much more
influential role on the stability characteristics of the
flow : the variation of Gr. with increasing radiation
effects is more pronounced than its counterpart in the
conduction regime. Conversely, at the higher tem-
perature stratifications corresponding to the boun-
dary layer regime, Fig. 3{(c) shows that radiation
stabilizes anew the flow against travelling wave
disturbances. For m = 10, the curves have two
minima for P, > 1. This type of transition was dis-
cussed in detail by Bergholz [5]. The high-wave num-
ber minimum is mainly associated with the shear for-
ces (hydrodynamic instabilities) while the buoyancy
forces prevail at the low-wave number minimum. To
determine the dominant source of instabilities, ener-
gies of the disturbance have been calculated at the
minima as a function of P, (Table 1). In a non-radi-
ating fluid, the largest contribution to the disturbance
kinetic energy comes from the buoyancy forces
(Z, > GrX,) at the critical points. By increasing the
radiation effects, the shear mode instability becomes
the more dangerous as can be seen from the increases
of GrX,. Consequently, the main contributor to the
disturbance kinetic energy is the shear force for a
radiating gas having a moderate optical thickness at
m = 10 and for P, < 5.

The variations of Gr, with m and P, is shown in
Fig. 4. The dashed curve represents the stationary
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F1G. 3. Neutral stability curves for various P,. Dashes denote

the mintmum (z, = 1,7 =1,¢, = ¢, =1, Pr = 0.7): (a) con-

duction regime; (b) transition regime; (c) boundary layer
regime.

mode for a non-radiating gas (conduction and tran-
sition regimes). The above discussed effects of radi-
ation according to the flow regime are clearly illus-
trated on this figure. Due to the increasing difficulties
involved in working out accurately the critical quan-
tities, the calculations were restricted to Gr, below
about 10° for the m-values corresponding to the
change from the transition to the boundary layer

1041

regime. Nevertheless, from the decrease of the slope
of the left-hand branch of the stability curve which
occurs when decreasing P,, it can also be deduced that
the domain of multicellular flows in the transition
regime is spread out towards higher stratification
parameters. It may be added that the horizontal
temperature gradient in the midplane has a positive
value as long as the critical point lies on this branch.

The variations of the critical wave number with m
and P, are displayed in Fig. 5. A decrease in P, leads
to a decrease in o for the low stratifications at which
the critical quantities depend weakly on m. The behav-
iour of the wave number is then similar to that of
a non-radiating fluid although the decrease with m
becomes slower when decreasing P,. As m increases
above a particular value depending on P,, the wave
number rises sharply at first and then increases con-
tinuously with m if P, < 0.5. The drop in «. due to
the predominance of the buoyancy forces (atm = 9.25
in the non-radiating case) is obtained at higher m-
values when P, decreases and disappears at P, = 0.5
in the range of temperature stratifications investi-
gated. Figure 6 shows the variations of the maximum
base flow velocity, W,..., and critical wave speed, c,
with m. It should be noted that the instabilities set in
as a single travelling wave moving downwards for the
radiating cases. As can be seen, the wave speeds are
much less than the maximum of the base flow vel-
ocities and quite independent of m over most of the
transition regime. In the range of m which cor-
responds to the end of this regime, the critical data
were not computed as explained above (Gr, > 10°). A
speed jump should be obtained followed by a decrease
similar to that of w,,,,. The wave speed is then higher
than the speed of the two oppositely travelling waves
relating to the non-radiating case until the point at
which the low-wave number minimum determines the
critical quantities (m = 9.25). The reverse is seen after
this point. A sampling of the values of the critical
parameters and relative magnitudes of the energy
terms for the case P, = 0.1 are listed in Table 2. It is
shown that the disturbances derive almost all their
energy from the work of the shear forces, at least over
the range of temperature stratifications investigated.
Small positive contributions to the buoyancy forces
are obtained when m is small like in the radiation-free
problem. At larger values of m, the buoyancy term
again becomes positive but X, is smaller than the shear
stress production term.

The variation of the critical Grashof number with
respect to the optical thickness is displayed in Fig. 7
for values of the stratification parameter cor-
responding to the three flow regimes and for P, = 0.5
and 0.1. In the conduction regime, Gr, is observed at
first to increase and then to decrease with 7, The
critical Grashof number of the radiation-free problem
is nearly reached at t,=7 and the maximum is
obtained around an optical thickness of one. The criti-
cal wave number also assumes a minimum for 7, ~ 1
while the critical wave speed is maximum. Similar
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Table 1. Influence of the interaction parameter on the disturbance energy (m = 10.0, n = 1.00, 7, = 1.00,

£, =¢;=1.0)
Low wave number High wave number

Py o, Gr, Gr¥, L, o Gr, Gr¥, x,
0.10 — — — e 3.15 657651 0.955 0.042
0.15 — — e — 3.83 532289 0911 0.086
0.50 e — — 4.655 447032 0.844 0.156
1.00 — — — — 4.84 437395 0.830 0.170
2.00 3.16 438361 0.556 0.443 4.95 434376 0.825 0.175
5.00 3.09 428761 0.515 0.485 5.01 433062 0.821 0.179

o0 3.06 422129 0.491 0.509 3.05 432492 0.819 0.182

15

0 5 10 g 12
FIG. 4. Variation of the critical Grashof number with the
stratification parameter: ——-——, stationary modes; —,

travellingmodes (¢, = ¢, = L,n=1,7,= 1L, Pr=0.7).
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FiG. 5. Variation of the critical wave number with the strati-
fication parameter ; ~———, stationary modes ; — travelling

modes (¢, =¢,=1,9= 1,7, =1, Pr=0.7).

variations of Gr, were reported previously [16, 17].
The additional feature to mention here is that the
radiating case cannot be reduced to the non-radiating
case for an optically thick gas when the radiation part
is not linearized because the speed of the single wave,

0.5

00
o e S L e s S
0 5 10 o, 12
F1G. 6. Variation of the critical wave speed, ¢, and
maximum base flow velocity, ———— Wy, with the strati-

fication parameter (¢, = ¢; =1, n=1,7,=1, Pr=0.7).

travelling in the direction of gravity, tends toward
a constant value. In the transition regime, m = 4.5,
radiation strongly destabilizes the flow at intermediate
optical thicknesses and the drop in Gr, becomes more
pronounced when decreasing P,. For 1, > 2, depen-
dencies of Gr, upon 1, and m are weaker. The increases
of Gr. which are shown at low values of 7, can be
explained by the particular m-value chosen. Indeed
for m = 4.5, the base flow velocities are reduced for
optically thin gases. Thus the onset of shear driven
instabilities is delayed. At m = 7, rapid increases of
Gr, are obtained for moderate optical thicknesses.
This stabilizing effect of radiation is due to the change-
over in the mode of instability: the contribution of
the work buoyancy forces to the disturbance kinetic
energy decreases as 7, increases. In contrast, the hori-
zontal temperature gradient of the basic state in the
midplane being positive for larger values of 7, the
flow re-enters the transition regime at t,~1 for
P,=0.1 and 1, ~2 for P, =0.5. A reversal of the
effect of radiation is obtained then as can be seen from
the slope of the right-hand branches of the Gr, curves
at m = 7. In summary, the results presented in Fig. 7
for various stratification parameters have shown that
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Table 2. Critical values and disturbance energy for non-
radiating fluid and for coupled radiation—convection

(Pr="0.7)
m o Gr, 10°% Grx, z,
(@) Po— 00
0.00 2.81 8030 0 0.906 0.094
3.00 2.60 11476 0 0.960 0.040
4.50 1.37 129325 0 1.091 —0.091
4.80 1.19 518722 0 1.063 —0.063
5.50 0.94 506458 +1.194 1.039 —0.038
6.00 2.76 184659 +1.206 0.963 0.032
8.75 4.57 289915 +0.645 0.820 0.180
9.00 4.66 314460 +0.613 0.819 0.181
9.25 2.90 340099 +0.762 0.512 0.488
10.00 3.00 414903 40.678 0.467 0.521
12.00 3.50 701 384 +0.484 0.451 0.540

b) Po=01Lt,=lp=l¢g=¢=1

0.00 246 14934 —0.103  0.954 0.046
300 242 16423  —0.103 0972 0.033
450 223 24126 -0.106 1031  —0.030
600 135 90212 —0.147 1140  —0.143
670 116 606140 —0.192 1099  —0.099
875 1.81 755734 —0.781  1.023  —0.027
9.00 218 676679 —0.761 1007  —0.013
1000 3.15 657651 —0.656  0.954 0.042
1200 447 920909 —0.468  0.877 0.119
510°
Grc
10°
10%] /
sl

(o]

4'5’05

F1G. 7. Variation of the critical Grashof number with the
optical thickness (¢, =¢, = 1,7 =1, Pr =0.7).

stability of the flow is significantly improved at first
by increasing the optical thickness while the opposite
is true for values of 7, exceeding a transition value
which depends upon m as well as P,. In the range of
values of m and P, investigated, the transition was
found to occur when t, ~ 2.

The critical Grashof numbers for m-values related
to the three flow regimes (m = 0, 4.5 and 10) are listed
in Table 3 for various non-greyness factors. Table 3(a)
is for a moderate interaction (P, = 0.5) while Table
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3(b) is for P, =0.1. In the conduction regime, the
results show that the onset of instability is delayed
when 75 increases. In the transition regime, Gr,
decreases weakly at low 5 while increases are seen for
n > 0.8. Since most of the disturbance energy is
derived from the shear forces, this behaviour can be
explained by decreases of the maximum base flow
velocities which occur when # increases. At m = 10
(boundary layer regime both for P, = 0.5 and 0.1) the
stability is more significantly improved for P, = 0.1.
It can be noted that this effect depends upon the m-
value chosen. Indeed, referring back to Fig. 4 (n = 1),
it is seen that the critical curves show a minimum
which moves towards both higher m and Gr_ values
when P, decreases (m=6.9, Gr.=215914 for
P,=0.5 and m=9.5, Gr. = 638629 for P, =0.1).
Gr, declines sharply as long as this minimum is not
reached while the slope of the critical curve is con-
siderably less for m higher than the minimum value.
At P, = 0.5and = 1, the critical point being located
far above the minimum, variations of # in the range
[0.5, 2] influence weakly the onset of travelling wave
instability. On the other hand, the critical point for
m = 10 is found to be close to the minimum of the
critical curve for Py = 0.1 and # = 1. Therefore, Gr,
is highly sensitive to variations of the radiative para-
meters and Gr, passes through the minimum with
increasing 7.

Finally, the influence of the wall emissivities ¢, and
¢, on the onset of instability are considered in this
section. For low emissivities, it is well known from
literature that the base flow temperature distribution
becomes flatter with increasing relative importance of
radiative transfer. This effect is expressed more in the
case of one black wall and one reflecting wall owing to
the availability of radiation reflected back to interact
again with the fluid layer. As a result, the velocities
are reduced, especially close to the wall the emissivity
of which is the highest. These findings are valid what-
ever the flow regime considered. In order not to mix
the effects of the non-linear term in the energy equa-
tion and those of the wall emissivities, the radiation
part of the problem was linearized. In this case, the
stability is improved by decreasing the wall emis-
sivities. However, because of the dissymmetry of the
base flow associated with different emissivities, travel-
ling wave disturbances govern the onset of insta-
bility : a single travelling wave is obtained along the
wall where the maximum base flow velocity occurs.
In addition, since the non-linear formulation of the
radiative term systematically leads to a negative wave
speed, the critical wave speed is increased for a cold
wall emissivity ¢, lower than the hot wall emissivity,
£,. On the other hand, the positive critical wave speed
along the hot wall decreases when ¢, < ¢,.

The effects of variations of wall emissivities upon
the critical Grashof number and wave speed are dis-
played in Figs. 8 and 9. The critical quantities are
given as a function of the stratification parameter
for four cases. For identical emissivities, the critical
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Table 3. Influence of the non-greyness factor on the critical values for selected stratification parameters

(a) P, =05 () P,=0.1
n o Gr, 10 ” o, Gr, 10%
m=10 m=10
0.50 2.68 9323 ~(.108 0.50 2.53 11052 —0.141
0.75 2.61 10322 -~0.126 0.75 2.47 12965 —0.122
1.00 2.55 11410 —~0.137 1.00 2.46 14952 —0.103
1.25 249 12531 ~0.142 1.25 2.45 16860 —0.086
1.50 2.43 13689 —0.145 1.50 244 18802 —0.074
1.75 2.38 14862 -{.144 1.75 243 20725 —0.063
2.00 2.34 16044 ~(.143 2,00 243 22623 —0.055
m=4535 m=435
0.50 1.47 53968 -0.193 0.50 2.15 23327 —0.153
0.75 1.52 51485 -(.207 0.75 2.20 23281 —0.128
1.00 1.55 51718 —0.214 1.00 2.24 24126 —0.106
1.25 1.53 52510 -0.125 1.25 227 25337 —0.089
1.50 1.53 53949 —-0.213 1.50 2.29 26 760 —0.075
1.75 1.52 55542 —~{.211 1.75 2.30 28291 —0.065
2.00 i.51 57510 —0.206 2.00 2.31 29 883 —0.057
m=10 = 10
0.50 4.83 433963 —{.535 0.50 394 490376 —0.650
0.75 4.74 439745 —0.545 0.75 3.53 560113 —0.661
1.00 4.65 447032 -00.548 1.00 3.15 657651 —0.656
1.25 4.58 454 550 -0.549 1.25 2.76 795597 —0.643
1.50 4.52 463024 -0.549 1.50 231 1014604 —0.625
L.75 4.46 471971 -0.549
2.00 4.40 481345 -0.549
Grashof number increases when decreasing simul- 0% L
tancously &; and ¢, in the conduction and transition ;
regimes. The influence of the radiative boundary con-
ditions is less pronounced at higher stratification para- ar
meters (i > 7) since the relative importance of radi- -
ative heat transfer decreases. In the case of different
wall emissivities, the most noticeable outcome of the
study is the behavourial difference in the critical curves 10%

shown at the end of the transition regime (4 < m < 6).

Unlike the previous results for the effects of the other

radiative parameters, it can be seen on Figs. 8 and 9
that the flow is not rapidly stabilized against dis-
turbances as the temperature stratification is greater
than m = 4. Furthermore, for a black cold wall and a
mirror hot wall {, = 1, &, = 0), the onset of instability
is monotonically increased with increasing m. There-
fore, Gr, is hardly reduced at the end of the transition

regime in the case of dissymmetric radiative boundary

conditions. It must also be emphasized that Gr. is
entirely determined by travelling wave disturbances
as can be seen in Fig. 9. The criticai wave speeds
are increased in the conduction regime and assume a
maximum at m ~ 6 instead of the speed jumps dis-
cussed previously. On the other hand, calculations of
the energies of critical disturbances have shown that
changes in the radiative boundary conditions act
slightly upon Gr X, and X,. The main contribution to
the disturbance kinetic energy comes from the viscous

lUleb IU LHC ld.ﬂgb "? <m < 6-
NUMERICAL SIMULATIONS
Numerical simufations of flows in taii verticai cavi-
ties were performed in order to assess the stability

&, =10
£,:z00
£4=10[
&,=00[

T T T

10 m12

FiG. 8. Effects of wall emissivities on the critical Grashof
number (Py=0.5,7,=1,5=1, Pr=07).

calculations. The results discussed in this section com-
plete those presented previously [11, 14, 15].
Following a procedure similar to the ones described
in refs. [7, 23], the variations of the critical Grashof
number with the aspect ratio can be obtained by com-
bining the vertical gradient at the cavity midplane

APﬂvaA frnm nn;’nprir\a‘ c;fpulnhnnc QﬂA ﬂ‘xp l‘rlh(‘al

data (Fig. 4). The resulting critical curves in the (Gr—
A) plane shown in Fig. 10 are much more convenient
for practical purposes since the stratification para-
meter is g priori unknown. Due to the lack of numeri-
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FiG. 9. Effects of wall emissivities on the critical wave speed
(Py=051,=1,n=1,Pr=0.7).

cal data for high Grashof numbers and high aspect
ratio cavities in the radiating case, only one branch of
the critical curves was plotted for P, = 1. As can be
seen, the stabilizing effect supplied by the radiative
transfer in the conduction regime is put in evidence.
It should also be noted that the bottom part of the
critical curve is nearly parallel to the A4-axis. There-
fore, unlike the non-radiating case, the critical
Grashof number depends weakly on the aspect ratio
for A > 10. In the transition regime, the increases in
Gr, are found in accordance with previous results of
simulations [14, 15].

As pointed out before, the onset of instability is
delayed in the transition regime when the aspect ratio
of the cavity is lower than 4 ~ 12 in the non-radiating
case for fluid having Pr = 0.7. On the other hand, the
critical aspect ratio for which multicellular flow is first
expected in the transition regime is reduced to 4, ~ 10
under the effect of radiation. Further decreases of

108 12

Grg ]

107

10

100

Fi1G. 10. Variation of the critical Grashof number vs aspect
ratio (t,=l,p=1,¢,=¢,=1, Pr=0.7).

1045

= 8 A = 10

F1G. 11. Effects of aspect ratio on the isotherms and stream-
lines for a radiating ftuid, Gr = 15000 (P, =0.5, 1, =1,
n=1,¢=¢=1,Pr=0.7).

P, will bring it down again as shown in Fig. 11 for
P, =0.5. At Gr = 15000, a weak multicellular flow is
established at 4 = 8. The instabilities are strengthened
when increasing A since the vertical temperature
stratification in the region of the centre of the cavity
becomes lower. This reduction of the critical aspect
ratio can be explained by the general effect of the
radiative transfer in participating media bounded by
two isothermal walls: radiation makes the tem-
peratures more uniform in the centre region while
the temperature gradients are increased at the walls.
Therefore, radiation compensates the stabilizing
effects of the end regions as it was discussed by Lee
and Korpela [10].

In the boundary layer regime, the theory predicts
that the unicellular range should be stretched under
the effects of radiation. An example may be used to
shed light on the agreement between the numerical
computations and stability analysis. From the stream-
lines reported in Fig. 12 for a cavity with 4 = 10 at
Gr = 200000 it can be seen that cells have formed in
the central region of a cavity filled with a non-radi-
ating fluid. It should be noted that the secondary
mottons appearing in the end regions are steady and
probably stem from the turning of the fluid in the ends.
On the other hand, the monocellular flow persists at
this Grashof number for P, = 0.5. The stratification
at cavity midpoint is kept constant with m = 6.36.
Similar numerical solutions were obtained by increas-
ing the optical thickness at higher interaction para-
meters.

SUMMARY AND CONCLUSIONS

The stability of natural convection flows of radi-
ating fluids contained inside vertical slots subjected
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Po=0.5

PO o

FiG. 12. Isotherms and streamlines in a cavity with 4 = 10
atGr=200000(t,=Lip=l,g,=¢,=1, Pr=10.7).

to prescribed wall temperatures has been studied by
means of linear stability analysis and by numerical
methods. The critical parameters and the energies of
the critical disturbances were determined for a wide
range of radiative parameters. The critical instabilities
were found to set in as a single travelling wave the
moving direction of which is strongly dependent on
the emissivities of the bounding walls. This is a conse-
quence of the loss of the odd symmetry of the base
flow. From the calculations of the energies of the
disturbances it has been shown that the dominant
source of instabilities in the transition and in the
boundary layer regimes is due to the shear forces for
a radiating gas having a moderate optical thickness.
The following conclusions may be drawn from the
stability analysis.

(1) Increasing the effect of radiation by decreasing
the interaction parameter P, stabilizes the flow in the
conduction regime. At the onset of instabilities, the
wave speed is much lower than the maximum base
flow velocities.

(2) On the other hand, radiation strongly desta-
bilizes the flow in the transition regime.

(3) In the boundary layer regime, radiation pro-
duces a change over in the source of instability. The
contribution of the work of the buoyancy forces to
the disturbance kinetic energy decreases. Accordingly,
a stabilizing effect of radiation is shown.

The stability of the flow is significantly improved
at first by increasing the optical thickness while the
opposite is seen for values of 7, exceeding a transition
value depending upon m as well as P,. The influence
of the non-greyness factor was found to be more
complicated and no general trends can be drawn. The
most noticeable outcome from the study of the influ-

G. DesrRaYAUD and (3. LAURIAT

ence of the wall emissivities is that the critical Grashof
number is strongly reduced at the end of the transition
regime in the case of dissymmetric radiative boundary
conditions. The critical Grashof number mono-
tonously increases then when increasing the tem-
perature stratification.

To end, we have shown that the flow features that
have been predicted by stability theory can be
obtained by numerical simulations. In addition, by
combining the results derived from stability cal-
culations and numerical simulations, it has been
shown that the critical aspect ratio at which a multi-
cellular convection can take place in the transition
regime is decreased by enhancing the radiative trans-
fer.

The results presented here, although based on an
approximate radiative transfer analysis, are expected
to provide all the significant qualitative behaviours of
the physical problem studied in this paper.
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APPENDIX

Since we are only interested in the driving forces, the power
integral method is applied on the momentum equation. Let
¥* represent the complex conjugate of i, multiply the result-
ing equation from equations (14) and (15) by ¥ *, integrate
over the interval [0, 1] and take only the real part of the
derived expression.

Then we obtained, following Bergholz [5], equation (20)

0, GrE¥ = GrZ¥+2¥-1%

where

Bt = —iRe {J w*@z—az)vﬁdx}
2 o
E¥=— %‘Im U' l/;*[(w-c)(@‘*ua’)—@%vllﬁdx}
0

1
= ne{[vrsrad)

E} = %Re {J: xﬁ*(@z—az)zlﬁdx}

Re and Im being the real and the imaginary parts of the
expressions.

INFLUENCE DU RAYONNEMENT SUR LA STABILITE DES ECOULEMENTS DANS
DES CAVITES VERTICALES

Résumé—La stabilite des ecoulements de convection naturelle d'un fluide absorbant, émissif, non gris et
non diffusant confine entre deux parois verticales chauffées différenticllement est &tudié. L’équation de
transfert radiatif est simplifiée en utilisant approximation P1. Les équations du mouvement de base et les
équations de perturbation linéarisées sont résolues 4 I'aide de la méthode spectrale tau. L'effet du rayon-
nement sur les valeurs critiques est présenté en fonction du paramétre d’interaction, de I'épaisseur optique,
du facteur spectral et des émissivités des parois pour une large gamme de valeurs du paramétre de
stratification. L’énergie des modes critiques de perturbation est également calculée. Les instabilités se
présentent toujours sous la forme d’une onde progressive dont la direction dépend de I'émissivité des
parois. Les prédictions de I'analyse de stabilité linéaire sont confirmées par des simulations numériques.

DER STRAHLUNGSEINFLUSS AUF DIE STABILITA‘.T VON FLUIDEN IN
VERTIKALEN HOHLRAUMEN

Zusammenfassung—Es wird die Stabilitdt der natiirlichen Konvektion eines strahlungsfihigen Fluids in
einem vertikalen Spalt mit isothermen Seitenwinden unterschiedlicher Temperatur untersucht. Dabei
wird ein absorbierend-emittierendes, nicht-graues, nicht-streuendes Fluid betrachtet und die Pi-Niherung
benutzt, um den StrahlungsfluB in der Energiegleichung zu beschreiben. Die grundlegenden Strémungs-
gleichungen und die linearen Stabilititsgleichungen werden mit einer spektralen tau-Methode gelost. Der
EinfluB der Strahlung auf die kritischen Werte wird als Funktion des Wechselwirkungs-Parameters, der
optischen Dicke des Fluids, des “Nicht-Grau”-Parameters und der Wand-Emission iber einem weiten
Bereich von Schichtungs-Parametern dargestellt. Die Energie-Inhalte der kritischen Stér-Arten werden
ebenso berechnet. Fiir alle untersuchten Fille ergab sich, daB die Instabilititen als eine einzelne wandernde
Welle einsetzen, deren Bewegungsrichtung von der Wand-Emission abhiingt. Die Voraussagen der
Stabilitdtsanalyse von mehrzelligen Strémungen strahlungsfahiger Fluide werden mit Hilfe von Finite-
Elemente-Berechnungen iiberprift.
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BJIMSAHUE U3JIYUEHUS HA YVCTOAYHMBOCTDb XXUJIKOCTEHA B 3AMKHYTbIX
BEPTUKAJIBHBIX IMTOJOCTAX

Ansoramms—Hccnenyercs yCToHYHBOCTb €CTECTBEHHON KOHBEKLUHMH H3Nyvalollell XUAKOCTH B BEpTHKA-
JIbHOM TOJIOCTH, H30TEpMHYECKHE GOKOBBIE CTEHKH KOTOPO#H HMEIOT pasHbie TeMnepatypul. PaccMaTpu-
BacTCH TIOJIOLIAIOIE—H3ITYYalollias Hecepas B HepacceHBaromias cpefa. JIydHCThI TOTOK B YPRBHCHHH
3HEPTrHH YYHTHIBACTCA C MOMollbio Pl annpoxcumauny. YpaBHEHHS, ONHCHIBAIOILHE TCYCHHE, H YDAaBHE-
HUA JHHEHHOH YCTOHYMBOCTH PEIlAIOTCH CNEKTPAILHBIM T-METOAOM. BiHsHHE H3tyveHHs HA KPHTHYEC-
KHe 3Ha4YeHHs NPEACTaBJICHBI B BHAE 3aBHCHMOCTEHf OT mapaMeTpa B3aHMOACHCTBHS, ONTHYECKOH
TOJILIHHBI, NAPAMETPA HECEPOrO COCTOSAHHSA Cpelbl H CTENEHN YEPHOTHI CTEHOK B IIMPOKOM [Mana3oHe
3HaYeHud nmapameTpa crpaTudukauun. KpoMe Toro, paccuuraH 3HepreTHueckHil 6asaHC KPHTHYECKHX
Moj Bo3MyeHn#d. JIns Bcex MCCeNOBaHHBIX CiiyYaeB HaHIEHO, 4YTO HEYCTOHYHBOCTb BO3HHKACT B BHAE
OAMHOYHOI Oerylliell BOJIHBI, HampaBJieHHe OBHKEHHA KOTOpPO} 3aBHCHT OT CTCNCHH YEPHOTHI CTEHOK.
Pe3ynbTaThl aHAIM3a YCTOHYHBOCTH NMPOBEPAIOTCH KOHEYHO-Pa3HOCTHLIMHM PacYeTaMM MHOTOSYEHCTRIX
TeYCHHH H3Ty4YalolHX KHAKOCTCH.



