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Us&a&-This ~a~~a~~~c~ the stability of natural conveztk31~ of a radiating fluid costarred in a vertica1 
slot bav~~g isothermal side walls at different te~~r~t~r~. An absorbin~~~~tt~ng, non-grey but non- 
scattering A&d is considers and the PI a~prox~m~~~o~ is used to dezzribe the radiative ffux in the energy 
equation. Tbc base Bow equations and the linear stability equations were solved by a spectral tatl method, 
The effect of radiation on te critica values ax presented as functions of the interaction parameter, the 
optical thickness of the Ruid, the non-~e~~~s parameter and the wall ~~~~~t~~ over P wide ran@ of 
s~r~t~~~t~~~ parameter. The e~ergetics of the critical disturbance modes were &o caicufated. For all the 
cases investigated, it is found that t&e instabilities set in as a single tmve%ng wave the moving direction 
of which depends on the wall emissivities. The predictions of the stability analysis are verified by finite 

difference caIcu~dtio~s of multi~lluIar flows of radiating fluids. 

Tms ~mxt reports on a study of thermal convective 
fiows of radiating gases enclosed in verticali slots with 
side walls maintained at uniform but different tem- 
peratm%s. For high aspect ratio cavities, the flow may 
become unstatrle ia the induction regime and it under- 
goes a transition to a multicellular Bow pattern, This 
behaviour has been studied theoretically by using the 
linear stability analysis and the minimum Grashof 
number, for which a one-dimensional base flow 
becomes unstable, has been determined accurately for 
a large range af Prandtl numbers [l-4]. At moderate 
Prandtf numbers (J+ -C 12.7), onfy the sta~o~ar~ 
~ns~bilities exist For the &onducti~~ regime in a hid 
layer contained between two ~~tbe~al plates {4, S]_ 
The i~stab~Iity is hydrod~ami~ in its origin and the 
critical Grashof number is nearly independent of 
PrandtI number. However, when as~rne~~e~ occur 
in the base flow f6], the ~nstabiiit~ sets in as a single 
wave travelling abng one of the plates. 

To study the stability in the transition as well as 
madam layer regimes, the effects of the vertical tem- 
perature gradient must be taken into account. This 
can be done by introducing into the analysis an 
add~~j~~al parameter, namefy the s~at~~~~~~~ para- 
meter M = (r Rcx/~)~-~ where y is an arbitrary can- 
stant which gives the state of temperature strati- 
fication of the core in dim~ns~onl~ form [S, 7JS It has 
been shown by Bergholz that the magnitude of m and 
the value of PF have a strong in%.~en~ upon the type 
aad character of the instability. For Prandtf numbers 

&se to unity, a change in the mode of ins~abil~~~ 
occurs if 131 exceeds a value of the order of rrtl N 5 : 
the critical d~sturban~ modes are stationarjr if 
RZ -C m, and travelling waves if m > m t. These results 
can be applied not only for a verticaf layer but also for 
cavities the aspect ratios ofwhich are m~erately large 
provided that a u~~f~~ stable vertical temperature 
gradient is present irk the core. For example, travelling 
waves were observed e~~~rn~ntally by Schinkel [g] 
for air-filled cavities with aspect ratios ranging from 
5 to 9. Agree~lents between theoreti~l and nume~~al 
results have also been noted in the works of Jones [9], 
Lee and Kurpela [lO], Lauriat and ~~rayaud [I I] 
among others. 

While the Benard problem of radiating &ids has 
received ~o~side~ble attention in the pasf the vertical 
case has been much less studied. The ~nteraGtio~ of 
radiation and convection in the boundary layer 
regime has been analytically and ex~rime~~all~ 
examined by Bratis and Novotny ft.& The e~per- 
imental data are compared to a boundary layer type 
analysis and special attention is turned to the heat 
transfer calculations and to the accuracy of ra~ation- 
gas models rather than on the influence of the inter- 
action upon the flow regimes. More recently, Kuro- 
saki et af. ZI 31 ~~rn~r~~IIy and ~x~r~mentally studied 
combined radiation and natural convection using car- 
bon dioxide as a radiating medium in a cavity of 
moderate aspect ratio. The eEe&s of radiation on the 
various flow regimes were investigated numerically by 
Lauriat fl4, IS] both for grey Auids and for non-grey 
gases. 
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NOMENCLATURE 

a thermal diffusivity Greek symbols 
A aspect ratio of the cavity, H/D CI dimensionless wave number in the z- 
D width direction 
Gr Grashof number, g/?AT’D ‘jv’ B coefficient of thermal expansion 
H height of the cavity Y vertical dimensionless temperature 

10 first moment of the radiation intensity gradient, aT/dz 

km mean extinction coefficient si emissivity of wall i; i = 1,2 
n index of refraction non-greyness factor 

P pressure x thermal conductivity 

P, interaction parameter, k,i/nZc7Th3 V kinematic viscosity 
Pr Prandtl number, v/a cs dimensionless complex decrement, 

qr radiative heat flux vector of components cr,+i 0, 

(L 4X) a Stefan-Boltzmann constant 
Ra Rayleigh number, Gr Pr = gflAT’D3/av 70 optical thickness, k,D. 

T dimensionless temperature 

TIII dimensionless mean temperature 
T,*(x) shifted Chebyshev polynomial of the first 

Superscripts 
_ 

kind (nth order) 
base flow quantity 

AT temperature difference between the side 
perturbed quantity 

, 
walls 

dimensional quantity. 

V velocity vector of components (u, w) 
X dimensionless horizontal coordinate, Subscript 

x’/D i cold wall, i = 1 at x = 0 ; hot wall, i = 2 

Z dimensionless vertical coordinate, z//D. atx= 1. 

The first theoretical study of the stability of the part of the problem was employed and the previous 
conduction regime was carried out by Arpaci and 
Bayazitoglu [ 161. An approximate formulation of the 
equation of radiative transfer which permits a for- 
mulation involving only a differential equation (Pl 
approximation) was used because of its simplicity. 
Thus, in addition to the Grashof number, the stability 
characteristics of a radiating gas layer depend on four 
parameters: the optical thickness z,, the interaction 
parameter or Planck number P,, the non-greyness r] 
and the emissivities of the vertical plates. An impor- 
tant outcome of this study is that the critical Grashof 
number reaches a maximum when the optical thick- 
ness increases. For thick gases, radiation does not 
affect the onset of instability and the maximum is 
more pronounced for cases corresponding to non- 
grey gases and non-black boundaries. The decreases 
of P, or of the emissivities of the plates flatten the 
base temperature which, in turn, leads to a decrease 
of the vertical velocities. Consequently the onset of 
instabilities is delayed in the conduction regime since 
the instabilities are produced by the shearing forces 
between the upward and downward flowing streams. 
This effect has also been shown in two-dimensional 
numerical calculations [ 141. 

The stability of the conduction regime of radiating 
gases contained inside slender slots and subjected to 
either prescribed wall temperatures or convective 
boundary conditions has been studied by Hassab and 
ijzisik [ 171. An identical formulation of the radiating 

results were reinforced for the vertical case. In recent 
papers [l&20], the initial state was investigated in the 
convection regime and the base flow solution was 

found to agree with the numerical results obtained 
around the midheight of high aspect ratio cavities with 
a two-dimensional computational code. Also, it has 
been shown that the principle of exchange of stabilities 

does not hold in the conduction regime for asymmetric 
radiative boundary conditions or if the radiation term 
in the base flow equations is not linearized. For these 
cases, the instabilities set in as a single travelling wave 
the moving direction of which is strongly dependent 
on the emissivities of the bounding walls. 

To date, the stability of the convection regime in 
radiating gases has not been treated in detail. The 
purpose of this study is to examine the effects of radi- 
ation on the stability properties of the transition and 
boundary layer regimes. Most of the results are 
restricted to cases for which radiative transfer and 
natural convection are of the same order of magni- 
tude. In the following sections we present the basic 
system to be solved first. An extension is made to the 
application of the P3 approximation method for the 
radiation part of the problem in order to consider the 
improvement to be brought to the previous PI results, 
especially at intermediate optical thicknesses. The 
dependence of the critical quantities upon the strati- 
fication parameter and the four radiation parameters 
quoted above is discussed next. 
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BASE FLOW SOLUTION 

Consider the parallel flow of an absorbing, 
emitting, non-grey viscous fluid within a vertical chan- 
nel. The side walls located at x’ = 0 and D are taken 
opaque, grey and diffuse and are held at uniform 
temperatures Tg and Tb, ,respectively, with Th > T6. 
A Cartesian coordinate system is chosen with the posi- 
tive z’-axis in the direction opposite to the gravity 
vector g. It is assumed that the temperature difference 
AT’ = Yh- TG is small enough such that the Bous- 
sinesq approximation is valid and that viscous dis- 
sipation is negligible. The governing equations are put 
into non-dimensional form by introducing the set of 
scales (D, v/g/?AT’D, AT’, n*eTiAT’) for length, 
time, temperature and radiative flux (or first moment 
of the radiation intensity), respectively. Assuming that 
a stable vertical temperature gradient y is found in the 
core, the equations governing the plane-parallel flow 
may be obtained from the general formulation by 
setting 

P = AZ) 

v = [O, G(x)] 

T(x, z) = 2=(x) +yz 

Qr = (L 0). (1) 

The dimensionless equations governing the initial 
motion then reduce to 

d3W dp 
=+Y&=o 

4&G d2T I 70 % _ 0 
dx* PO dx (3) 

subject to boundary conditions 

G = 0, i== T,fO.S atx=O,l. (4) 

In equation (3) m is the stratification parameter 
defined by 4m4 = Ray. The positive sign in equation 
(4) and in the subsequent equations is for the surface 
at x = 1. In these equations, the pressure has been 
eliminated by deriving the equation of motion. Conse- 
quently, a supplementary condition must be used to 
insure the closure of the system. In order not to force 
the velocity to be zero at x = 0.5, the third condition 
applied to the equation of motion is deduced from a 
mass flux over any cross-section 

s I 

w(x) dx = 0. 
0 

(5) 

The first- and third-order spherical harmonics 
method [21] modified in order to include the weighted 
effect of nongreyness [ 161 have been used to calculate 
the radiative flux in the energy equation. 

If the radiation part is solved by the Pl approxi- 
mation, the radiative flux is given by 

d*&(x) 47~ dT4(x) 
dx2 

- 3+j,,(x) - __ ~ T; dx = o (6) 

which is subject to boundary conditions 

(7) 

When using the P3 approximation, the following 
equation must be solved : 

d44rx -- 
dx4 

1022d24, 35 4_ 
0 dx2 + ~VLX 

_47 

At wall i, the boundary condition may be stated as 

+ ;7,2[7-90(1 +E,)YJ!& f Yyr(7c, - 19) 

x &%X -60(1 +ci)yizO + !$ 
m 

T 1 = 0 (9) 

where 

yi = l/(5-3~~) and li = &,/2(2-ci), i = 1,2. 

For the non-radiating case, the exact solution for 
the basic state can be readily found. Also, analytical 
solutions have been determined in the conduction 
regime for radiating fluids but by linearizing the non- 
linear term contained in equation (6) [ 16, 171. On 
the other hand, the algebraic involvement with the 
solution of the base flows corresponding to the con- 
vection regimes should be a formidable task especially 
when using the P3 approximation. Moreover, the 
radiation term should be linearized and we shall show 
afterwards that this procedure has a clear influence 
on the stability calculations. Consequently, it is pre- 
ferable to solve the basic equations numerically. At 
this point, it is appropriate to anticipate somewhat 
the contents of the next section : following the classical 
approach for stability problems, the disturbance vari- 
ables will be expanded into a finite series of complete 
orthogonal trial functions to obtain approximate 
solutions of the eigenvalue problem. Since the solution 
of the basic state has to be introduced in the per- 
turbation equations, it is desirable that the approxi- 
mate solution of the initial problem should be ex- 
pressed in terms of identical trial functions in order 
to simplify the treatment of the perturbation equa- 
tions. In this study, Chebyshev polynomials were 
chosen to improve convergence [22]. Accordingly, the 
solution is expanded as 

f(x) = (10) 
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where T,* is the nth-degree shifted Chebyshev poly- 
nomial of the first kind and s stands for $J, T, &. 
Truncating each of the series to N terms and requiring 
the residuals to be orthogonal to each expansion func- 
tion with the usual weight leads to a non-linear system 
for the expansion coefficients [IS]. 

The general systems of equations were solved using 
the DGEFS routine from the SLATEC Library and 
the computations were performed in double precision 
on a VAX 1 l/780 computer. Concerning the number 
of terms which must be retained in the polynomial 
expansions, it has been found that N depends both 
upon the strength of the non-linear coupling between 
the energy and radiative transfer equations and upon 
the value of the stratification parameter. For example, 
in the boundary layer regime and for r0 = 1 the 
numerical method generates fourth decimal place 
accuracy when truncating the series to 12 terms only 
while an apparent limiting value is achieved with 
N = 18. For larger optical thicknesses, the radiative 
flux varies steeply at the walls. Consequently, more 
terms are required to obtain a given accuracy. 
For most of the computations presented herein, the 
number of terms ranges from 18 to 24. 

The influence of radiation on the temperature pro- 
file is only mentioned here because it could be derived 
from previous literature : smaller temperature gradi- 
ents are found in the middle of the layer and larger 
gradients near the boundaries. Decreases of the 
Planck number produce increases of these effects for 
all optical thicknesses with a maximum for z, N I. 
Radiation becomes unimportant for small optical 
thicknesses (r, rr 0. I if P, > 0. I) and the problem may 
be assumed to be the one of a non-radiating fluid with 
a modified Prandtl number for large optical thick- 
nesses since the radiative transfer tends towards a 
diffusive process. More interesting are the influences 
of radiation on the velocity field since the maximum 
velocities decrease or increase when increasing the 
relative importance of radiative heat transfer accord- 
ing to the value of the stratifi~tion parameter. For 
example, at r,, = 1, decreases of P, yield decreases in 
velocities if m < 4.5 while the opposite is seen in the 
boundary layer regime. It should also be noted that 
the velocity and temperature profiles are asymmetric 
with maximum velocities located within the cold side 
for black boundaries. This effect is due to the non- 
linear term in the energy equation. The influences of 
increases of the optical thickness are similar but with 
a maximum around moderate z,. 

The accuracy of the Pl approximation has been 
studied by comparison with the P3 approximation. It 
is well established that the first-order approximation 
is not adequate for solving the two-dimensional equa- 
tion of radiative transfer in square enclosures unless 
the medium is optically thick 1211. On the other hand 
the P3 approximation provides adequate results for 
t, > 0.5. However, it should be noted that the large 
discrepancies obtained under radiative equilibrium 
conditions (PO = 0) and for cavities with moderate 
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0 0.5 1 

FIG. 1. Comparison of velocity profiles for the PI and P3 
approximations (PO = 0.5, T, = I, E, = iz2 = I, q = 1, 

Pr = 0.7). 

aspect ratios cannot challenge the validity of the 
results for the limiting one-dimensional coupled prob- 
lem which corresponds with the basic flow. On 
account of the quite different points of view which can 
be found in the literature about this question, it was 
found appropriate to present selected comparisons 
between PI and P3 results. Figure I shows velocity 
profiles for a moderate Planck number and r0 = 1 
in the three flow regimes: the largest deviations are 
obtained in the conduction regime since P, is only a 
dimensionless measure of the relative importance of 
radiative and conductive heat fluxes and they are kept 
within a few percent. The discrepancies are much less 
expressed for the temperature while they are more 
important for the radiative heat flux. This can be seen 
in Fig. 2 especially around optical thicknesses of one. 
For the most unfavorable case considered in this 
study, the discrepancies in the velocities are about 
10% while the radiative transfer produces a decrease 
of the maximum velocities of about 40%. In 
conclusion, it is believed that the PI approximation is 
accurate enough to provide all the general trends on 
the effects of radiation for participating media 
enclosed in tall cavities. The increased complexity in 
the high-order approximations and the required com- 
putational efforts are only justified in radiation-domi- 
nated cases. The relevance of the stability com- 
putations could then be questionable. 

LINEAR STABILITY ANALYSIS 

To investigate the stability of the basic flow, we 
follow the conventional approach in linear theory of 
superimposing arbitrarily small ~rturbations on the 
base flow velocities, pressure, temperature and radi- 
ative flux or first moment of the radiation intensity r, 
according to 

(11) 

Thus the four variables are considered to be the 
sum of base flow (denoted by bars) and disturbance 
quantities (denoted by tildes) as follows : 
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m= 0. 
4 

__________---------____ 

&I 
__ ___________________----------- 

m ~7. zcGo.1 

3 
m m -0. _____--------____ 

,/’ 
__-- - _, --“, 

,c’ \. 
,/’ ‘I 

,, ,A $I PI ,*,’ *\. ,/’ : 

2 ,/ 
. . 

-%.____/ 
m= 7. G=l. 

____ p3 m=7. 
0 ,I,, 

%t,= 5. 

0 0.5 1 

FIG. 2. Comparison of radiative heat flux distributions for 
the Pl and P3 approximations (Pu = 1, E, = E* = 1, 1 = 1, 

Pr = 0.7). 

&<< 1. (12) 

The perturbation equations are obtained by intro- 
ducing the total quantities into the system of equa- 
tions of the initial state cast in the stream function- 
vorticity formulation ($, Q), then subtracting the 
base flow equations from the resulting equations and 
finally neglecting the perturbation terms of second 
and higher orders. 

It should be stressed that the perturbed flow is 
obtained by considering that the parallel base flow 
can only be perturbed through two-dimensional 
infinitesimal disturbances in the x-z plane. The depen- 
dence of the perturbation quantities on x, z, t is written 
as a superposition of Fourier modes of the form 

7(x, z, t) = f(x) exp (i ctz+at). (13a) 

A temporal analysis being undertaken, the decrement 
u = or +i oi is complex while the wave number c1 in 
the vertical direction is real. The wave speed c and the 
wavelength 1, of the disturbances are given by 

c = -oi/u (13b) 

& = 27L/c(. (13c) 

If c = 0, the disturbance mode is stationary and it is 
a travelling wave otherwise. The amplification rate of 
the Fourier mode is denoted by ur. The perturbation 
equations can be written as 

0 = (@-I?)$-R (14) 

aGrR = {(LB*--C1*)-itLGr~}R+~T+iolGr~*d$ 

(15) 

aRaT= {(S?*-u2)-it(Ra@}T 

-4m4Q$+iaRa_CSi?j +$(B2-a2)Zo (16) 
cl 

0 = ((9’_1*)-3~~}Zo+48~$T (17) 

where 

9 = d/dx. 

The boundary conditions at x = 0,l are 

*=g+=o 

T=O 

9z, f -z. = 0. 
rl 

(18) 

This set of equations is solved by the spectral tau 
method with shifted Chebyshev polynomials of the 
first kind as trial functions. The four variables R, 
$, T, I, are expanded according to equation (10). 
Substituting the expansions into equations (14)-( 17) 
and requiring the residuals to be orthogonal to the 
trial functions leads to a complex algebraic eigenvalue 
problem [19] which must be completed with equations 
(18) since the trial functions do not satisfy the bound- 
ary conditions. 

This system can be written in matrix form as 

AX = oBX. (19) 

The vector X consists of the coefficients of the series. 
Matrix A is complex and B real. 

The parameters which control the stability problem 
in the system of equations (14)-(17) are the Grashof 
number, the Prandtl number, the stratification para- 
meter, the four radiation parameters Po, 70, q, ci and 
the wave number. The condition for solving the above 
system generates an eigenvalue relation of the form 
Gr(Pr,m, P,, z,, q,~, a) = 0. The eigenvalue cr is a 
measure of the decay or amplification of the dis- 
turbances : depending on whether cr, is positive, zero 
or negative, the disturbance is amplified, neutral or 
damped out; the curves of marginal stability are 
reached for gr = 0. Each point on these curves was 
constructed by applying a secant method of iteration 
to Gr with tl fixed by satisfying the requirement that 
the real part of the highest eigenvalue equal to zero 
within a specified error for the Grashof number 
(errors less than 0.5%). According to the value of ui at 
this point, the flow is subject to stationary instability 
(ai = 0, exchange of stabilities) or to travelling wave 
instability (ai # 0, overstability). The critical Grashof 
numbers, Gr,, and the critical wave numbers, tl,, cor- 
respond to the absolute minimum of the neutral 
curves. These minima were determined using a spline 
interpolation method. 
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DISTURBANCE ENERGY BALANCE 

The power integral method, based on a balance of 
energy which takes into account the base ilow dis- 
torsion due to the Reynolds stress and the buoyancy 
forces, gives additional insight into the physical pro- 
cess involved in the onset of instability. Indeed, at the 
critical points, the rate of transfer of kinetic energy 
from the total flow into the disturbances precisely 
balances the rate at which the energy of the dis- 
turbances is lost due to the viscous dissipation. 

Following ref. [5], we obtain by applying the power 
integral method on the momentum equation 

a,GrE,* = GrZT+Zf-XT (20) 

where the expression for Ez, ICY, GT are given in the 
Appendix. In equation (20), the term on the left-hand 
side represents the rate of growth of the disturbance 
kinetic energy. The energy source terms are Gr ZT, the 
rate of transfer of kinetic energy from the total flow 
to the disturbance due to Reynolds stress (shear 
forces), and Cq, the rate of transfer of kinetic energy 
to the disturbance due to the buoyancy forces. The 
term -2; is always negative (sink term) and gives 
the rate of loss of kinetic energy of the disturbance 
due to viscous dissipation. On the neutral curves an 
equilibrium flow is possible and we have 

By studying the sign and the relative magnitudes of 
GrX,T and C:, the main contribution to the dis- 
turbance kinetic energy can be found. In the following 
subsections, equation (21) will be normalized by 
dividing the two sides by XT. Therefore, by setting 
C f = C:,ET and CZ = X:/CT, the sum Gr C, + C, must 
be equal to unity (within a prescribed numerical error) 
at the neutral points. 

RESULTS 

The numerical results were obtained for radiative 
parameters considered reasonable for gases and for a 
maximum temperature difference between the vertical 
side walls equal to 20% of the reference temperature 
(T,,, = 5) so that the Boussinesy approximation might 
be valid. The Prandtl number was taken to be 0.7 for 
all the cases presented here. This value is rep- 
resentative of radiating gases such as carbon dioxide 
or ammonia at atmospheric pressure in the tem- 
perature range 300-500 K but slightly low for water 
vapour (Pr N I). For the Planck number, the smallest 
value was P, = 0.1, This is somewhat greater than the 
values used in previous stability studies [16, 171 but 
still out of the range corresponding to usual gases 
[ 131. The domains of variations chosen for Z, and n 
also appear to be representative of gases. 

Stability calculations 

between black isothermal walls (ej = c1 = 1). The 
neutral curves for values of stratification parameters 
relevant to the three flow regimes and for various 
Planck numbers at moderate optical thickness are 
shown in Fig. 3. The first significant effect of radiation 
is found in the nature of the disturbances. For a non- 
radiating fluid with Pr = 0.7, stationary wave dis- 
turbances govern the onset of instability if m < 5 while 
a transition to travelling wave instability occurs at the 
higher stratification corresponding to the boundary 
layer regime (the beginning of this regime being char- 
acterized by a negative horizontal temperature gra- 
dient at the centre-line of the channel). On the other 
hand, the odd-symmetry of the base flow being 
destroyed by radiation, the neutral Grashof number 
is always determined by travelling wave disturbances, 
even in the conduction regime. The second effect of 
radiation is to shift upward the neutral curves in the 
conduction regime. By decreasing PO, the increase in 
critical Grashof number, Gr, (denoted by dashes on 
the neutral stability curves), occurs continuously as 
can be seen in Fig. 3(a). It should be added that the 
critical Grashof numbers depend weakly upon the 
formulation used for the radiation term (linearized or 
not). Also, the critical wave speeds are much less than 
the maximum veiocities of the base flow 1201. In the 
transition regime and at stratification parameters for 
which radiation increases the base flow velocities, the 
neutral stability curves are shifted downward (Fig. 
3(b)). In these cases, the energy for instability is 
derived mainly from the shear forces at the midplane 
between the upstream and downstream flows. As 
shown in Fig. 3(b), radiation then plays a much more 
inRuentia1 role on the stability characteristics of the 
flow: the variation of Gr, with increasing radiation 
effects is more pronounced than its counterpart in the 
conduction regime. Conversely, at the higher tem- 
perature strati~cations corresponding to the boun- 
dary layer regime, Fig. 3(c) shows that radiation 
stabilizes anew the flow against travelling wave 
disturbances. For m = 10, the curves have two 
minima for P, > 1. This type of transition was dis- 
cussed in detail by Bergholz [S]. The high-wave num- 
ber minimum is mainly associated with the shear for- 
ces (hydrodynamic instabilities) while the buoyancy 
forces prevail at the low-wave number minimum. To 
determine the dominant source of instabilities, ener- 
gies of the disturbance have been calculated at the 
minima as a function of P, (Table 1). In a non-radi- 
ating fluid, the largest contribution to the disturbance 
kinetic energy comes from the buoyancy forces 
(ZZ > Gr X,) at the critical points. By increasing the 
radiation effects, the shear mode instability becomes 
the more dangerous as can be seen from the increases 
of Gr C,. Consequently, the main contributor to the 
disturbance kinetic energy is the shear force for a 
radiating gas having a moderate optical thickness at 
m = 10 and for P, < 5. 

In order to reduce the number of independent para- The variations of Gr, with m and P, is shown in 
meters, we will first consider grey media (‘I = 1) Fig. 4. The dashed curve represents the stationary 
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FIG. 3. Neutral stability curves for various P,. Dashes denote 
theminimum(r,=1,q=1,~,=s2=1,Pr=0.7):(a)con- 
duction regime; (b) transition regime; (c) boundary layer 

regime. 

mode for a non-radiating gas (conduction and tran- 
sition regimes). The above discussed effects of radi- 
ation according to the flow regime are clearly illus- 
trated on this figure. Due to the increasing difficulties 
involved in working out accurately the critical quan- 
tities, the calculations were restricted to Gr, below 
about lo6 for the m-values corresponding to the 
change from the transition to the boundary layer 

regime. Nevertheless, from the decrease of the slope 
of the left-hand branch of the stability curve which 
occurs when decreasing PO, it can also be deduced that 
the domain of multicellular flows in the transition 
regime is spread out towards higher stratification 
parameters. It may be added that the horizontal 
temperature gradient in the midplane has a positive 
value as long as the critical point lies on this branch. 

The variations of the critical wave number with m 
and PO are displayed in Fig. 5. A decrease in PO leads 
to a decrease in CI, for the low stratifications at which 
the critical quantities depend weakly on m. The behav- 
iour of the wave number is then similar to that of 
a non-radiating fluid although the decrease with m 
becomes slower when decreasing P,,. As m increases 
above a particular value depending on P,, the wave 
number rises sharply at first and then increases con- 
tinuously with m if PO < 0.5. The drop in CL, due to 
the predominance of the buoyancy forces (at m = 9.25 
in the non-radiating case) is obtained at higher m- 
values when PO decreases and disappears at PO = 0.5 
in the range of temperature stratifications investi- 
gated. Figure 6 shows the variations of the maximum 
base flow velocity, W,,,, and critical wave speed, c, 
with m. It should be noted that the instabilities set in 
as a single travelling wave moving downwards for the 
radiating cases. As can be seen, the wave speeds are 
much less than the maximum of the base flow vel- 
ocities and quite independent of m over most of the 
transition regime. In the range of m which cor- 
responds to the end of this regime, the critical data 
were not computed as explained above (Gr, > 106). A 
speed jump should be obtained followed by a decrease 
similar to that of W,,,. The wave speed is then higher 
than the speed of the two oppositely travelling waves 
relating to the non-radiating case until the point at 
which the low-wave number minimum determines the 
critical quantities (m = 9.25). The reverse is seen after 
this point. A sampling of the values of the critical 
parameters and relative magnitudes of the energy 
terms for the case PO = 0.1 are listed in Table 2. It is 
shown that the disturbances derive almost all their 
energy from the work of the shear forces, at least over 
the range of temperature stratifications investigated. 
Small positive contributions to the buoyancy forces 
are obtained when m is small like in the radiation-free 
problem. At larger values of m, the buoyancy term 
again becomes positive but X2 is smaller than the shear 
stress production term. 

The variation of the critical Grashof number with 
respect to the optical thickness is displayed in Fig. 7 
for values of the stratification parameter cor- 
responding to the three flow regimes and for PO = 0.5 
and 0.1. In the conduction regime, Gr, is observed at 
first to increase and then to decrease with rO. The 
critical Grashof number of the radiation-free problem 
is nearly reached at r0 = 7 and the maximum is 
obtained around an optical thickness of one. The criti- 
cal wave number also assumes a minimum for r0 N 1 
while the critical wave speed is maximum. Similar 
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Table 1. Influence of the interaction parameter on the disturbance energy (m = 10.0, q = 1 .OO, Z, = I .OO, 
EI = &2 = 1.0) 

PO 

0.10 
0.15 
0.50 
1.00 
2.00 
5.00 
a3 

Low wave number 
Gr, GrZ, 

High wave number 
Gr, GrC, 

- - 3.15 657651 0.955 0.042 
- - - 3.83 532 289 0.911 0.086 
- - - 4.655 447 032 0.844 0.156 
- - - 4.84 437 395 0.830 0.170 

3.16 438 361 0.556 0.443 4.95 434 376 0.825 0.175 
3.09 428 761 0.515 0.485 5.01 433 062 0.821 0.179 
3.06 422 129 0.491 0.509 5.05 432 492 0.819 0.182 

FIG. 4. Variation of the critical Grashof number with the 
stratification parameter: ----, stationary modes; p, 

travelling modes fs, = Em = 1, q = 1, I, = 1, Pr = 0.7). 

0 5 10 m l2 
FIG. 5. Variation of the critical wave number with the strati- 
fication parameter : ----, stationary modes ; - travelling 

modes (E, = s2 = 1, q = 1, 5, = 1, Pr = 0.7). 

variations of Gr, were reported previously 116, 17. 
The additional feature to mention here is that the 
radiating case cannot be reduced to the non-radiating 
case for an optically thick gas when the radiation part 
is not linearized because the speed of the single wave, 

0 5 10 m 12 

f;IG. 6. Variation of the critical wave speed, - c, and 
rna~rn~ base flow velocity, ~--- r+,,, with the strati- 

fication parameter (E, = &* = 1, it = 1, z,, = 1, Pr = 0.7). 

travelling in the direction of gravity, tends toward 
a constant value. In the transition regime, m = 4.5, 
radiation strongly destabilizes the flow at intermediate 
optical thicknesses and the drop in Gr, becomes more 
pronounced when decreasing PO. For z, > 2, depen- 
dencies of Gr, upon z0 and m are weaker. The increases 
of Gr, which are shown at low values of t, can be 
explained by the particular m-value chosen. Indeed 
for m = 4.5, the base flow velocities are reduced for 
optically thin gases. Thus the onset of shear driven 
instabilities is delayed. At m = 7, rapid increases of 
Gr, are obtained for moderate optical thicknesses. 
This stabilizing effect of radiation is due to the change- 
over in the mode of instability: the contribution of 
the work buoyancy forces to the disturbance kinetic 
energy decreases as z, increases. In contrast, the hori- 
zontal temperature gradient of the basic state in the 
midplane being positive for larger values of z,, the 
flow re-enters the transition regime at t, N- 1 for 
P, = 0.1 and r0 N 2 for P, = 0.5. A reversal of the 
effect of radiation is obtained then as can be seen from 
the slope of the right-hand branches of the Gr, curves 
at m = 7. In summary, the results presented in Fig. 7 
for various stratification parameters have shown that 
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Table 2. Critical values and disturbance energy for non- 
radiating fluid and for coupled radiation<onvection 

(Pr = 0.7) 

0.00 
3.00 
4.50 
4.80 
5.50 
6.00 
8.75 
9.00 
9.25 

10.00 
12.00 

0.00 
3.00 
4.50 
6.00 
6.70 
8.75 
9.00 

10.00 
12.00 

(4 PO + w 
2.81 8030 0 0.906 0.094 
2.60 11476 0 0.960 0.040 
1.37 129325 0 1.091 -0.091 
1.19 518722 0 1.063 -0.063 
0.94 506458 f 1.194 1.039 -0.038 
2.76 184659 f 1.206 0.963 0.032 
4.57 289915 f 0.645 0.820 0.180 
4.66 314460 kO.613 0.819 0.181 
2.90 340 099 + 0.762 0.512 0.488 
3.00 414903 k 0.678 0.467 0.521 
3.50 701384 + 0.484 0.451 0.540 

(b) P, = 0.1, T, = 1, 1 = 1, a, = a:! = 1 

2.46 14934 -0.103 0.954 0.046 
2.42 16423 -0.103 0.972 0.033 
2.23 24 126 -0.106 1.031 -0.030 
1.35 90212 -0.147 1.140 -0.143 
1.16 606 140 -0.192 1.099 -0.099 
1.81 755 734 -0.781 1.023 - 0.027 
2.18 676 679 -0.761 1.007 -0.013 
3.15 657651 -0.656 0.954 0.042 
4.47 920 909 - 0.468 0.877 0.119 

5 103j.-.-.__ -- 

0 1 2 3 4 2, 5 

FIG. 7. Variation of the critical Grashof number with the 
optical thickness (a, = a2 = 1, q = 1, Pr = 0.7). 

stability of the flow is significantly improved at first 
by increasing the optical thickness while the opposite 
is true for values of z, exceeding a transition value 
which depends upon m as well as P,. In the range of 
values of m and P, investigated, the transition was 
found to occur when r, N 2. 

The critical Grashof numbers for m-values related 
to the three flow regimes (m = 0,4.5 and 10) are listed 
in Table 3 for various non-greyness factors. Table 3(a) 
is for a moderate interaction (P, = 0.5) while Table 

3(b) is for PO = 0.1. In the conduction regime, the 

results show that the onset of instability is delayed 
when rl increases. In the transition regime, Gr, 
decreases weakly at low rl while increases are seen for 
rl > 0.8. Since most of the disturbance energy is 
derived from the shear forces, this behaviour can be 
explained by decreases of the maximum base flow 
velocities which occur when r) increases. At m = 10 
(boundary layer regime both for P, = 0.5 and 0.1) the 
stability is more significantly improved for P, = 0.1. 
It can be noted that this effect depends upon the m- 
value chosen. Indeed, referring back to Fig. 4 (g = 1), 
it is seen that the critical curves show a minimum 
which moves towards both higher m and Gr, values 
when P, decreases (m = 6.9, Gr, = 215914 for 
P, = 0.5 and m = 9.5, Gr, = 638629 for P, = 0.1). 
Gr, declines sharply as long as this minimum is not 
reached while the slope of the critical curve is con- 
siderably less for m higher than the minimum value. 
At P, = 0.5 and rt = 1, the critical point being located 
far above the minimum, variations of rl in the range 
[0.5,2] influence weakly the onset of travelling wave 
instability. On the other hand, the critical point for 
m = 10 is found to be close to the minimum of the 
critical curve for P, = 0.1 and r~ = 1. Therefore, Gr, 
is highly sensitive to variations of the radiative para- 
meters and Gr, passes through the minimum with 
increasing q. 

Finally, the influence of the wall emissivities E 1 and 

.a2 on the onset of instability are considered in this 
section. For low emissivities, it is well known from 

literature that the base flow temperature distribution 
becomes flatter with increasing relative importance of 
radiative transfer. This effect is expressed more in the 
case of one black wall and one reflecting wall owing to 
the availability of radiation reflected back to interact 
again with the fluid layer. As a result, the velocities 
are reduced, especially close to the wall the emissivity 
of which is the highest. These findings are valid what- 
ever the flow regime considered. In order not to mix 
the effects of the non-linear term in the energy equa- 
tion and those of the wall emissivities, the radiation 
part of the problem was linearized. In this case, the 
stability is improved by decreasing the wall emis- 
sivities. However, because of the dissymmetry of the 
base flow associated with different emissivities, travel- 
ling wave disturbances govern the onset of insta- 
bility: a single travelling wave is obtained along the 
wall where the maximum base flow velocity occurs. 
In addition, since the non-linear formulation of the 
radiative term systematically leads to a negative wave 
speed, the critical wave speed is increased for a cold 
wall emissivity E, lower than the hot wall emissivity, 
a*. On the other hand, the positive critical wave speed 
along the hot wall decreases when a2 < a,. 

The effects of variations of wall emissivities upon 
the critical Grashof number and wave speed are dis- 
played in Figs. 8 and 9. The critical quantities are 
given as a function of the stratification parameter 
for four cases. For identical emissivities, the critical 
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Table 3. Influence of the non-greyness factor on the critical values for selected stratifi~tion parameters 
_._. 

(a) P, = 0.5 (b) Pa=O.l 

tf @, Gr, 103C V ctf Gr, 10% 

m=O m=O 
0.50 2.68 9323 -0.108 0.50 2.53 11052 -0.141 
0.75 2.61 10322 -0.126 0.75 2.47 12965 -0.122 
1 .oo 2.55 11410 -0.137 1.00 2.46 14952 -0.103 
1.25 2.49 12531 -0.142 1.25 2.45 16860 -0.086 
1.50 2.43 13 689 -0.145 1.50 2.44 18802 - 0.074 
1.75 2.38 14862 -0.144 1.75 2.43 20 725 -0.063 
2.00 2.34 16044 -0.143 2.00 2.43 22 623 -0.055 

??I = 4.5 m = 4.5 
0.50 1.47 53 968 -0.193 0.50 2.15 23 327 -0.153 
0.75 1.52 51485 - 0.207 0.75 2.20 23281 -0.128 
1.00 1.55 51718 -0.214 1.00 2.24 24 126 -0.106 
1.25 1.53 52510 -0.125 1.25 2.27 25 337 - 0.089 
1.50 1.53 53 949 -0.213 1.50 2.29 26 760 - 0.075 
1.75 1.52 55 542 -0.211 1.75 2.30 28291 -0.065 
2.00 1.51 57510 - 0.206 2.00 2.31 29 885 - 0.057 

m= 10 m= 10 
0.50 4.83 433 963 -0.535 0.50 3.94 490 376 -0.650 
0.75 4.14 439 745 -0.545 0.75 3.53 560113 -0.661 
1 .oo 4.65 447 032 -0.548 1 .oo 3.15 657651 -0.656 
1.25 4.58 454 550 -0.549 1.25 2.76 795 597 -0.643 
1.50 4.52 463 024 -0.549 1.50 2.31 1014604 -0.625 
1.75 4.46 471971 -0.549 
2.00 4.40 48 1345 -0.549 

._ 

Grashof number increases when decreasing simul- 
taneously E, and e2 in the conduction and transition 
regimes. The influence of the radiative boundary con- 
ditions is less pronounced at higher stratification para- 
meters (nz > 7) since the relative importance of radi- 
ative heat transfer decreases. In the case of different 
wall emissivities, the most noticeable outcome of the 
study is the behavourial difference in the critical curves 
shown at the end of the transition regime (4 g m < 6). 

Unlike the previous results for the effects of the other 
radiative parameters, it can be seen on Figs. 8 and 9 
that the flow is not rapidly stabilized against dis- 
turbances as the temperature stratification is greater 
than m = 4. Furthermore, for a black cold wall and a 
mirror hot wall fe, = 1. c2 = O), the onset ofinstab~fity 
is monotonically increased with increasing m. There- 
fore, Gr, is hardly reduced at the end of the transition 
regime in the case of dissymmetric radiative boundary 
conditions. It must also be emphasized that Gr, is 
entirely determined by travelhng wave disturbances 
as can be seen in Fig. 9. The critical wave speeds 
are increased in the conduction regime and assume a 
maximum at m IV 6 instead of the speed jumps dis- 
cussed previously. On the other hand, calculations of 
the energies of critical disturbances have shown that 
changes in the radiative boundary conditions act 
slightly upon Gr I:, and Cz. The main contribution to 
the disturbance kinetic energy comes from the viscous 
forces in the range 4 d m < 6. 

NUMERICAL SIMULATIONS 

Numerical simulations of Aows in tall vertical cavi- 
ties were performed in order to assess the stability 

0 5 10 m ” 
FIG. 8. Effects of wall emissi~ties on the critical Grashof 

number (Pa = 0.5, z, = I, tj = 1, Pr = 0.7). 

calculations. The results discussed in this section com- 
plete those presented previously [I 1, 14, 151. 

Following a procedure similar to the ones described 
in refs. [7, 231, the variations of the critical Grashof 
number with the aspect ratio can be obtained by com- 
bining the vertical gradient at the cavity midplane 
derived from numerical simulations and the critical 
data (Fig. 4). The resulting critical curves in the (Gr,- 
A) plane shown in Fig. 10 are much more convenient 
for practicai purposes since the stratification para- 
meter is a priori unknown. Due to the lack of numeri- 
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0 5 10 m 12 

FIG. 9. Effects of wall emissivities on the critical wave speed 
(PO = 0.5, T, = 1, g = 1, Pr = 0.7). 

cal data for high Grashof numbers and high aspect 
ratio cavities in the radiating case, only one branch of 
the critical curves was plotted for P, = 1. As can be 
seen, the stabilizing effect supplied by the radiative 
transfer in the conduction regime is put in evidence. 
It should also be noted that the bottom part of the 
critical curve is nearly parallel to the A-axis. There- 
fore, unlike the non-radiating case, the critical 
Grashof number depends weakly on the aspect ratio 
for A > 10. In the transition regime, the increases in 
Gr, are found in accordance with previous results of 
simulations [ 14, 151. 

As pointed out before, the onset of instability is 
delayed in the transition regime when the aspect ratio 
of the cavity is lower than A N 12 in the non-radiating 
case for fluid having Pr = 0.7. On the other hand, the 
critical aspect ratio for which multicellular flow is first 
expected in the transition regime is reduced to A, N 10 
under the effect of radiation. Further decreases of 

lo6 , , , , 12 

11 15 

Grc 
i 

105_ 

104_ 

IO 

FIG. 10. Variation of the critical Grashof number vs aspect 
ratio(t,=l,~=l,~,=~~=l,Pr=0.7). 

A=7 A=8 A = 10 

FIG. 11. Effects of aspect ratio on the isotherms and stream- 
lines for a radiating fluid, Gr = 15000 (P, = 0.5, t, = I, 

q = 1, E, = e2 = 1, Pr = 0.7). 

P, will bring it down again as shown in Fig. 11 for 
P, = 0.5. At Gr = 15 000, a weak multicellular flow is 
established at A = 8. The instabilities are strengthened 
when increasing A since the vertical temperature 

stratification in the region of the centre of the cavity 
becomes lower. This reduction of the critical aspect 
ratio can be explained by the general effect of the 
radiative transfer in participating media bounded by 
two isothermal walls: radiation makes the tem- 
peratures more uniform in the centre region while 
the temperature gradients are increased at the walls. 
Therefore, radiation compensates the stabilizing 
effects of the end regions as it was discussed by Lee 
and Korpela [lo]. 

In the boundary layer regime, the theory predicts 

that the unicellular range should be stretched under 
the effects of radiation. An example may be used to 
shed light on the agreement between the numerical 
computations and stability analysis. From the stream- 
lines reported in Fig. 12 for a cavity with A = 10 at 
Gr = 200 000 it can be seen that cells have formed in 
the central region of a cavity filled with a non-radi- 
ating fluid. It should be noted that the secondary 
motions appearing in the end regions are steady and 
probably stem from the turning of the fluid in the ends. 
On the other hand, the monocellular flow persists at 
this Grashof number for P, = 0.5. The stratification 
at cavity midpoint is kept constant with m = 6.36. 
Similar numerical solutions were obtained by increas- 
ing the optical thickness at higher interaction para- 
meters. 

SUMMARY AND CONCLUSIONS 

The stability of natural convection flows of radi- 
ating fluids contained inside vertical slots subjected 
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PO -- l?o=o.5 

FIG. 12. Isotherms and streamlines in a cavity with A = 10 
at Gr = 200000 (7” = I, a = 1, E, = E> = 1, Pr = 0.7). 

to prescribed wall temperatures has been studied by 
means of linear stability analysis and by numerical 
methods. The critical parameters and the energies of 
the critical disturbances were determined for a wide 
range of radiative parameters. The critical instabilities 
were found to set in as a single travelling wave the 
moving direction of which is strongly dependent on 
the emissivities of the bounding walls. This is a conse- 
quence of the loss of the odd symmetry of the base 
flow. From the calculations of the energies of the 
disturban~s it has been shown that the dominant 
source of instabilities in the transition and in the 
boundary layer regimes is due to the shear forces for 
a radiating gas having a moderate optical thickness. 
The following conclusions may be drawn from the 
stability analysis. 

(1) Increasing the effect of radiation by decreasing 
the interaction parameter P, stabilizes the flow in the 
conduction regime. At the onset of instabilities, the 
wave speed is much lower than the maximum base 
flow velocities. 

(2) On the other hand, radiation strongly desta- 
bilizes the flow in the transition regime. 

(3) In the boundary layer regime, radiation pro- 
duces a change over in the source of instability. The 
contribution of the work of the buoyancy forces to 
the disturbance kinetic energy decreases. Accordingly, 
a stabilizing effect of radiation is shown. 

The stability of the flow is signi~cantly improved 
at first by increasing the optical thickness while the 
opposite is seen for values of Z, exceeding a transition 
value depending upon m as well as PO. The influence 
of the non-greyness factor was found to be more 
complicated and no general trends can be drawn. The 
most noticeable outcome from the study of the influ- 

ence of the wall emissivities is that the critical Grashof 
number is strongly reduced at the end of the transition 
regime in the case of dissymmetric radiative boundary 
conditions. The critical Grashof number mono- 
tonously increases then when increasing the tem- 
perature stratification. 

To end, we have shown that the flow features that 
have been predicted by stability theory can be 
obtained by numerical simulations. In addition, by 
combining the results derived from stability cal- 
culations and numerical simulations, it has been 
shown that the critical aspect ratio at which a multi- 
cellular convection can take place in the transition 
regime is decreased by enhancing the radiative trans- 
fer. 

The results presented here, although based on an 
approximate radiative transfer analysis, are expected 
to provide all the significant qualitative behaviours of 
the physical problem studied in this paper. 
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APPENDIX 

Since we are only interested in the driving forces, the power 
integral method is applied on the momentum equation. Let 
JI * represent the complex conjugate of $, mu&ply the result- 
ing equation from equations (14) and (15) by il, *, integrate 
over the interval [O, I] and take only the real part of the 
derived expression. 

Then we obtained, following Bergholz [5], equation (20) 

a,GrEz = GrE:+X$-xj’ 

where 

Ez= -1Re ‘$*(@--a’)$dx 

Re and Im being the real and the imaginary parts of the 
expressions. 

INFLUENCE DU RAYONNEMENT SUR LA STABILITE DES ECOULEMENTS DANS 
DES CAVITES VERTICALES 

R&sum&--La stabilite des ecoulements de convection naturelle dun fluide absorbant, bmissif, non gris et 
non diffusant confine entre deux parois verticales chauffees di~~rentiellement est btudie. L’equation de 
transfert radiatif est simphfiee en utilisant l’approximation Pl. Les equations du mouvement de base et les 
equations de perturbation lineariies sont resolues a I’aide de la methode spectrale tau. L’effet du rayon- 
nement sur les valeurs critiques est presente en fonction du parametre d’interaction, de I’epaisseur optique, 
du facteur spectral et des imissivites des parois pour une large gamme de valeurs du parametre de 
stratification. L’energie des modes critiques de perturbation est Cgalement calculee. Les instabilites se 
presentent toujours sous la forme dune onde progressive dont la direction depend de I’emissivite des 
parois. Les predictions de l’analyse de stabilite lint&ire sont conftrm~s par des simulations numeriques. 

DER STRAHLUNGSEINFLUSS AUF DIE STABILITAT VON FLUIDEN IN 
VERTIKALEN HOHLR;iUMEN 

Zusammenfassung-Es wird die Stabilitit der natiirlichen Konvektion eines strahlungsfahigen Fluids in 
einem vertikalen Spaft mit isothe~en Seitenw&nden unter~hiedlicher Temperatur untersucht. Dabei 
wird ein absorbierend-emittierendes, nicht-graues, nicht-streuendes Fluid betrachtet und die PI-Naherung 
benutzt, urn den StrahlungstluD in der Energiegleichung zu beschreiben. Die grundlegenden Striimungs- 
gleichungen und die linearen Stabilitltsgleichungen werden mit einer spektralen tau-Methode gelost. Der 
EinfluR der Strahlung auf die kritischen Werte wird als Funktion des Wechselwirkungs-Parameters, der 
optischen Dicke des Fluids, des “Nicht-Grau”-Parameters und der Wand-Emission tiber einem weiten 
Bereich von Schichtungs-Parametern dargestellt. Die Energie-Inhalte der kritischen St&-Arten werden 
ebenso berechnet. Fiir alle untersuchten Falle ergab sich, daB die instabilit~ten als eine einzeine wandernde 
Welle einsetzen, deren Bewegungsrichtung von der Wand-Emission abhlngt. Die Voraussagen der 
Stabilitltsanalyse van mehrzelligen Stromungen strahlung&higer Fluide werden mit Hilfe von Finite- 

Elemente-Berechnungen iiberpriift. 
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BJIBIlHME WJIY9EHkII HA YCTOZiWiBocTb lKkiflKOCTER B 3AMKHYTbIX 
BEFTHKAlIbHbIX I-IOJ-IOCTIIX 

Ammmms-WccnenyeTcn yCTOiiWiBOCTb ecTecTBeHHoe KOIiBeKI&HH H3nyvalourel *HAKocTH B nepMKa- 

JIbHOg lIOJIOCTH,H30TepMHWCKHe boroabte CTeHEH KOTOpOfi HMeK)T pa3Hble TeMlIepaTypbl.PaCCMaTpH- 

BaeTcn nornowamuesi3nyqaK)UIal Hecepan n Hepaccemamruan cpena.JIywcrbIjI no~oK n ypaeHeHmi 

3HeprHH yWTbIBaeTCn C IIOMOUblO P1 allllpOKCHMal@iH.YpaBHeHHK,OllHCbIBalOlUHeTe~eiiHe,H ypaBHe- 

HHn,IHHetiHOii yCTOii'iHBOCTH peJLItuoTCnCIleKTpaJIbHblM ?-MeTOAOM.BJlHnHHeH3JQ"IeHHn HaKpHTHWC- 

KHC 3Ha9eHHn OpelVZTaBJIeHbI B BHAe 3aBHCHMOCTeii OT napaMeTpa B3aHMO~eikTBHn, OnTHWCKOii 

~0nUHHb4, napahmpa ~eceporo cocTonHHn cpem H creneHH qepHoTU creHoK B IIIH~OK~M miana30He 

3Ha4eHHii IlapaMeTpa CTpaTH@HKa,JHH. KpoMe TOTO, paCCVHTaH 3HepWTH'ieCrHti 6maHc KpHTHWCKHX 

MOJI BO3MyllleHUik.~Jln EZCeX HCCJIenOBaHHbIX CJIy'laeB Hai-iJleHO,YTO HeyCTOikHBOCTb B03HHKaeT B BHlle 

OLIHHO'IHOii 6eryuIeii BOJIHM, HalIpaBJIeHHe nBH,KeHHn KOTOpOii JaBHCHT OT CTelIeHH 'IepHOTbl CTeHOK. 

Pe3yJIbTaTbI aHaJIH3a YCTOfi'iHaoclll IIpOBepnloTCfl KOHeSHO-pa3HOCTHbIMH paC'IeTaMH MHOrOn'IeHCTbIX 


